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WePlan – Forests

This project is developed by the International Institute for Sustainability Australia and
International Institute for Sustainability Rio, in partnership with the Convention on
Biological Diversity (CBD) Secretariat as part of the implementation of the Forest
Ecosystem Restoration Initiative with the financial assistance of the Korea Forest
Service of the Government of the Republic of Korea and the European Union.

The aim of this project is to offer to all developing countries Party to the CBD with
tropical forest in their territories a decision support platform for restoration planning
and implementation in forest ecosystems. Additionally, it aims to support countries in
the formulation of more ambitious, realistic, and specific forest ecosystem restoration
plans and targets within their global commitments.

WePlan – Forests is a decision support platform for spatial optimisation planning of
forest ecosystem restoration that can significantly enhance the outcomes of policies,
programs and projects for biodiversity conservation, sustainable development, climate
change mitigation and poverty alleviation.

The platform consists of a user-friendly web-based interface that automates the
technical and computing requirements of complex spatial analyses and allows users
without GIS and spatial modelling know-how to explore a broad range of results and
scenarios. The details of all underlying processes and data would be available so that
procedures are transparent.

Platform development

The platform is built using best available spatial data and contemporary approaches to
mathematical optimisation of systematic spatial planning problems to develop
evidence-based decision support for forest ecosystem restoration. As new data becomes
available the platform will be updated to reflect better information, other objectives,
higher resolution datasets, and broader coverage.

Version 1 was a demonstration version of the analysis that reflected biodiversity
conservation and climate change mitigation benefits, while accounting for opportunity
and establishment costs. Improvements in the quantification of these benefits and
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costs, and other improvements to the formulation of the decision support problem, that
were incorporated into Version 2 are summarised in Table 1.

Version v001 (Dec 2020) v002 (Apr 2021)
Biodiversity conser-
vation (reduction in
mean extinction risk)

SPARC dataset (c.45,000
species representing best
performing models only),
equal weighting among
species

SPARC dataset (c.103,000
species representing all
models weighted by perfor-
mance), balanced weights
among plants and animals

Climate change mit-
igation (carbon se-
questration)

E. Broadbent (U Florida)
Nov 2020 estimates

E. Broadbent (U Florida)
Nov 2020 estimates

Opportunity cost IIS 2020 estimates Vincent & Yi 2021 estimates

Establishment cost IIS 2020 estimates, does
not account for potential for
natural regeneration

Vincent, Kaczan, et al.
2021 estimates

Accounts for potential
for natural regenera-
tion

No Yes

Resolution, projection
and mapping

1km; Mollweide; binary
maps

1km; Mollweide; maps of
ranked priorities

Table 1: Comparison between the components of the first and second editions of the
WePlan – Forests restoration planning analyses.

Disclaimer

The designations employed and the presentation of the material in this document do
not imply the expression of any opinion whatsoever on the legal status of any country,
territory, city or area or of its authorities, or concerning the delimitation of its frontiers
or boundaries. Every effort is made to ensure these data are free of errors but there is
no warrant that these data, or the maps and graphs resulting from this analysis, are
accurate or fit for any particular purpose.
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Context

Forests are home to 80% of the world’s biodiversity and stock high amounts
of carbon relative to other ecosystems. However, substantial areas of forest have
been cleared and, of the remaining forests, as much as 82% are now degraded to some
extent as a result of human actions such as industrial logging, urbanization, agriculture
and infrastructure (Watson et al., 2018). Tropical forest restoration has the potential
to counteract some of these negative impacts and deliver multiple benefits, such as
climate change mitigation, biodiversity conservation, and provide sustainable
livelihoods for people (Chazdon & Guariguata, 2016; Crouzeilles et al., 2020).

The Strategic Plan for Biodiversity 2011-2020 adopted at the CBD COP 10
in 2011 established a set of twenty Aichi Biodiversity Targets. Target 5 stated
that by 2020 degradation and fragmentation of habitat should be significantly reduced,
and Target 15 referred to the need to restore at least 15% of degraded ecosystems.
Country Parties to the CBD are expected to develop National Biodiversity Strategies
and Action Plans (NBSAPs) that contribute to achieving the Aichi Biodiversity Targets.

An assessment conducted in 2016 concluded that many of the national
targets adopted in response to the Aichi Biodiversity Target 15 lacked
specificity (COP-13/CBD, 2016). The post-2020 Global Biodiversity Framework
updated Zero Draft states as the 2050 vision: “By 2050, biodiversity is valued,
conserved, restored and wisely used, maintaining ecosystem services, sustaining a
healthy planet and delivering benefits essential for all people” (CBD 2020). The need
to further develop the capacity of developing countries to undertake quantitative,
spatially-explicit assessments of restoration opportunities was highlighted in the
Pan-African Action Agenda on Ecosystem Restoration for Increased Resilience, adopted
at the recent Africa Biodiversity Summit in the margins of the CBD COP 14 in 2018.

In response to the need thus identified, the “WePlan – Forests: A decision
support platform for spatial planning of forest ecosystem restoration” was
developed. The WePlan – Forests platform can help governments and other
stakeholders to plan and implement forest restoration to cost-effectively achieve
biodiversity conservation and climate mitigation benefits. WePlan – Forests also
enables users to explore the potential of certain areas to sustain natural forest
regrowth, a restoration intervention that is often the most cost-effective and provides
substantial benefits for biodiversity and climate (Crouzeilles et al., 2017).
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Guiding questions and overview

WePlan – Forests (Fig. 1) can help to inform restoration planning and
implementation within tropical forest ecosystems at the national scale for
developing countries Party to the CBD by answering five different key
questions:

1. Where are the priority areas for restoration that maximise multiple benefits, while
minimising costs?

2. What benefits are likely to be achieved over an area to be restored and what are
the costs?

3. How do trade-offs between benefits and costs affect restoration priorities?

4. Where and when should actions be scheduled in space?

5. Where and how intensively restoration actions should be implemented?

The problem formulation achieves a range of potential objectives (benefits
and costs) within a given percentage of deforested land to be restored:

1. Maximising benefits for biodiversity conservation

2. Maximising benefits for climate change mitigation

3. Minimising restoration establishment costs (while accounting for the potential for
natural forest regrowth)

4. Minimising costs
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Figure 1: Conceptual overview of the WePlan – Forests spatial optimisation framework
for planning forest restoration in forest ecosystems at the national scale for developing
countries Party to the CBD.

WePlan – Forests allows for four main outputs:

1. Identification of priority areas for forest restoration

2. Quantification of objectives (benefits and costs)

3. Comparisons of the impacts of a variety of alternative scenarios (including
cost-effective solutions)

4. Quantification of trade-offs among objectives

For further information, online training material is available by following this link. This
training material was developed during a webinar series in 2020 to promote the uptake
of the science in which the WePlan – Forests is based by potential users. During the
webinars feedback was solicited from the participants to improve the WePlan – Forests
interface and the training itself, and to tailor the platform to the needs of users. It also
aimed to produce training material that is available within the WePlan – Forests
platform for future users, and to showcase the platform.
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Results

Analysis overview and interpretation

WePlan – Forests is a spatially explicit, forest restoration planning tool that evaluates a
range of alternative scenarios, reporting the benefits, costs and spatial distribution of
restoration priorities for each one. It considers two objectives: (i) climate change
mitigation benefit, estimated as the change in carbon sequestration that would arise
from forest restoration, and (ii) biodiversity conservation benefit, estimated as the
average reduction in local (national) extinction risk among all forest-associated species.
The analysis also considers opportunity and implementation costs of forest restoration.
Analyses occur at a 1 km2 resolution on a national basis, for countries containing
tropical and subtropical forests within ±25 degrees latitude.

Four main types of analysis are presented: (i) optimal solutions that maximise
cost-effectiveness (benefit / cost); (ii) optimal solutions that maximise benefit,
ignoring costs; (iii) optimal reference solutions that minimise total costs, ignoring
benefits; and (iv) reference solutions that randomise restoration. The first two analyses
also involve evaluation of the trade-off between climate change mitigation and
biodiversity conservation benefits. Trade-off curves are described by solving the
optimisation problem across a range of relative weights of the two objectives, which
provides decision-makers with information on the strength of the trade-off and helps to
identify possible scenarios representing good compromises between the objectives.
Planning solutions were developed for five area targets, representing 10, 20, 30, 40,
and 50% of the area available for forest restoration.

A number of general patterns that can typically be observed in these analyses:

• First, the cost-effectiveness analysis usually achieves somewhat lower returns
than the maximum-benefit analysis, but at much lower cost. The cost-effective
scenarios therefore provide the greatest return-on-investment and are the primary
focus for forest restoration planning support.

• Second, there is usually some level of trade-off between climate change
mitigation and biodiversity conservation benefits. Hence, it is usually not possible
to achieve maximum benefits for both simultaneously and the trade-off curves
WePlan – Forests describes help to identify solutions that are good compromises
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between the two objectives.

• Third, as the area target increases the returns on climate change mitigation and
biodiversity conservation benefits increase, but often not linearly. This implies
that the return-on-investment per unit area changes depending on how much
area is restored.

• Fourth, the minimum-cost solution identifies the cheapest solution for restoring
forest for a given area target but typically performs poorly with respect to
climate change mitigation and biodiversity conservation benefits.

• Fifth, the random solution often performs poorly with respect to both benefits
and costs, usually providing the lowest returns-on-investment among all of the
analyses for a given area target. The random scenario is likely to be a fair
approximation of returns for any planning process that is based on other concerns
and that does not consider these objectives explicitly.

The solutions generated by the WePlan – Forests analyses do not prescribe where
restoration action should occur, but rather support and inform decisions about
restoration planning. These analyses account for several key dimensions of restoration
planning problems but they do not account for all relevant factors. Local-scale factors
such as governance, land ownership and tenure, livelihoods, and local community
objectives are also often important to consider in the decision-making process.

WePlan – Forests provides a quantitative, spatially-explicit, transparent and
evidence-based framework for evaluating a range of restoration targets and scenarios to
inform national-scale planning. The Weplan – Forests team can work with nations to
develop bespoke analyses that reflect national policy and priorities.

This report provides an overview of the key results of the national WePlan – Forests
analyses. The full range of scenarios and their associated climate change mitigation
and biodiversity conservation benefits can be explored on the interactive WePlan –
Forests solution explorer.

This section first presents a tabular and graphical summary of all scenarios evaluated
across all area restoration targets. It then provides graphical and map-based overviews
of the results for each target level separately.
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Country Cameroon
Analysis version v002
Number of scenarios evaluated 80
Area of country 47.6 M ha
Area within WePlan – Forests domain 46.2 M ha
Area available for forest restoration 4.7 M ha
Restoration targets considered (% of available) 10, 20, 30, 40, 50%
Number of species considered 7325
Number of plant species 6572
Number of bird species 488
Number of mammal species 177
Number of amphibian species 75
Number of reptile species 13

Table 2: Summary of country-level properties pertaining to the WePlan – Forests restora-
tion planning analysis.
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Scenarios Target
(%)

Carbon
seq. (Gt)

Mean red.
ext. risk
(%)

Cost (mil-
lions US$)

Cost-effectiveness scenarios
Biodiversity conservation focus 10% 7.8 1.1 1477.2
Climate mitigation focus 10% 11.3 0.5 1147.5
Balanced solution 10% 9.4 0.9 1161.9
Biodiversity conservation focus 20% 15.4 1.7 3135
Climate mitigation focus 20% 23.4 1 3126.7
Balanced solution 20% 19.9 1.4 2800.6
Biodiversity conservation focus 30% 22.9 2 4970.5
Climate mitigation focus 30% 33.7 1.5 5201.6
Balanced solution 30% 30.2 1.9 4894.3
Biodiversity conservation focus 40% 30.6 2.3 6930.4
Climate mitigation focus 40% 41.6 1.9 7187
Balanced solution 40% 37.7 2.2 6947.3
Biodiversity conservation focus 50% 37.4 2.6 8881
Climate mitigation focus 50% 48.8 2.2 9352.6
Balanced solution 50% 45.5 2.5 9077.4

Max-benefit scenarios
Biodiversity conservation focus 10% 8.7 1.2 1990
Climate mitigation focus 10% 16 0.4 2481.3
Balanced solution 10% 13.8 1 2297.5
Biodiversity conservation focus 20% 17.1 1.8 4316.9
Climate mitigation focus 20% 28 1 4845.8
Balanced solution 20% 25.2 1.5 4559.8
Biodiversity conservation focus 30% 25.7 2.2 6385.8
Climate mitigation focus 30% 37.2 1.5 7059
Balanced solution 30% 33 2.1 6836.4
Biodiversity conservation focus 40% 33.1 2.4 8311.6
Climate mitigation focus 40% 44.8 2 9104.1
Balanced solution 40% 42.2 2.3 8926.4
Biodiversity conservation focus 50% 40.3 2.6 10221
Climate mitigation focus 50% 51.2 2.3 10928.7
Balanced solution 50% 47.1 2.6 10697.7

Table 3: Summary of benefits to climate change mitigation (carbon sequestration)
and biodiversity conservation (mean reduction in extinction risk among forest-associated
species) and costs arising from a subset of WePan – Forests restoration planning scenarios
at each of the area restoration targets evaluated. The climate mitigation and biodiversity
conservation focused scenarios maximise only single objectives, and any benefit to the
other objective is incidental. The balanced solution refers to a solution on the trade-off
curve that provides good returns on both objectives.
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Area deemed available for forest restoration

Figure 2: Area deemed available for forest restoration. Areas in purple indicate
the 1 km2 planning units that were assessed to have potential for forest restoration given
(see Methods for details). The shading of cells from light to dark purple is proportional
to the area within each planning unit available for forest restoration.
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Combined results for restoration of 10-50% of deforested

lands
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Figure 3: Restoration of 10, 20, 30, 40 & 50% of deforested lands. Performance
of a range of forest restoration prioritisation scenarios (points) with respect to climate
change mitigation benefit (x axis), measured as above-ground carbon sequestration, and
biodiversity conservation benefit (y axis), measured as the mean percent reduction in
extinction risk among all species. Cost-effective scenarios (solid line) maximise return-
on-investment (benefit/cost) and are likely to represent the most feasible restoration
planning options. For reference, maximum-benefit scenarios (dashed line) that maximise
returns irrespective of cost are also presented. The point circled in black represents a
potential good compromise solution. Two further reference scenarios are also presented
in which restoration is allocated randomly (triangle) or to minimise costs irrespective of
benefit (square). For all scenarios the colour represents the total cost of the solution
(see legend). The following figures show results from each of the restoration area targets
separately. An interactive version of this figure is available online.

15

http://www.weplan-forests.org


Results for restoration of 10% of deforested lands
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Figure 4: Restoration of 10% of deforested lands. Performance of a range of
forest restoration prioritisation scenarios (points) with respect to climate change mitiga-
tion benefit (x axis), measured as above-ground carbon sequestration, and biodiversity
conservation benefit (y axis), measured as the mean percent reduction in extinction risk
among all species. Cost-effective scenarios (solid line) maximise return-on-investment
(benefit/cost) and are likely to represent the most feasible restoration planning op-
tions. For reference, maximum-benefit scenarios (dashed line) that maximise returns
irrespective of cost are also presented. The point circled in black represents a potential
good compromise solution. Two further reference scenarios are also presented in which
restoration is allocated randomly (triangle) or to minimise costs irrespective of benefit
(square). For all scenarios the colour represents the total cost of the solution (USD; see
legend). Maps of the locations associated with several of these solutions are included in
the following two figures.
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Figure 5: Restoration of 10% of deforested lands. Priority locations for restoration
(cyan) for a solution that represents a balance between climate change mitigation and
biodiversity conservation objectives while maximising cost-effectiveness (benefit/cost).
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(a) cost-effective: climate change mitigation (b) cost-effective: biodiversity conservation

(c) max-benefit: climate change mitigation (d) max-benefit: biodiversity conservation

Figure 6: Restoration of 10% of deforested lands. Priority locations for restoration
(cyan), under four scenarios: maximising cost-effectiveness for climate change mitigation
only (a) and biodiversity conservation only (b), versus maximising benefit irrespective of
cost for climate change mitigation only (c) and biodiversity conservation only (d). These
figures illustrate how priority location change across the four scenarios.
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Results for restoration of 20% of deforested lands
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Figure 7: Restoration of 20% of deforested lands. Performance of a range of
forest restoration prioritisation scenarios (points) with respect to climate change mitiga-
tion benefit (x axis), measured as above-ground carbon sequestration, and biodiversity
conservation benefit (y axis), measured as the mean percent reduction in extinction risk
among all species. Cost-effective scenarios (solid line) maximise return-on-investment
(benefit/cost) and are likely to represent the most feasible restoration planning op-
tions. For reference, maximum-benefit scenarios (dashed line) that maximise returns
irrespective of cost are also presented. The point circled in black represents a potential
good compromise solution. Two further reference scenarios are also presented in which
restoration is allocated randomly (triangle) or to minimise costs irrespective of benefit
(square). For all scenarios the colour represents the total cost of the solution (USD; see
legend). Maps of the locations associated with several of these solutions are included in
the following two figures.
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Figure 8: Restoration of 20% of deforested lands. Priority locations for restoration
(cyan) for a solution that represents a balance between climate change mitigation and
biodiversity conservation objectives while maximising cost-effectiveness (benefit/cost).
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(a) cost-effective: climate change mitigation (b) cost-effective: biodiversity conservation

(c) max-benefit: climate change mitigation (d) max-benefit: biodiversity conservation

Figure 9: Restoration of 20% of deforested lands. Priority locations for restoration
(cyan), under four scenarios: maximising cost-effectiveness for climate change mitigation
only (a) and biodiversity conservation only (b), versus maximising benefit irrespective of
cost for climate change mitigation only (c) and biodiversity conservation only (d). These
figures illustrate how priority location change across the four scenarios.
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Results for restoration of 30% of deforested lands
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Figure 10: Restoration of 30% of deforested lands. Performance of a range of
forest restoration prioritisation scenarios (points) with respect to climate change mitiga-
tion benefit (x axis), measured as above-ground carbon sequestration, and biodiversity
conservation benefit (y axis), measured as the mean percent reduction in extinction risk
among all species. Cost-effective scenarios (solid line) maximise return-on-investment
(benefit/cost) and are likely to represent the most feasible restoration planning op-
tions. For reference, maximum-benefit scenarios (dashed line) that maximise returns
irrespective of cost are also presented. The point circled in black represents a potential
good compromise solution. Two further reference scenarios are also presented in which
restoration is allocated randomly (triangle) or to minimise costs irrespective of benefit
(square). For all scenarios the colour represents the total cost of the solution (USD; see
legend). Maps of the locations associated with several of these solutions are included in
the following two figures.
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Figure 11: Restoration of 30% of deforested lands. Priority locations for restoration
(cyan) for a solution that represents a balance between climate change mitigation and
biodiversity conservation objectives while maximising cost-effectiveness (benefit/cost).
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(a) cost-effective: climate change mitigation (b) cost-effective: biodiversity conservation

(c) max-benefit: climate change mitigation (d) max-benefit: biodiversity conservation

Figure 12: Restoration of 30% of deforested lands. Priority locations for restoration
(cyan), under four scenarios: maximising cost-effectiveness for climate change mitigation
only (a) and biodiversity conservation only (b), versus maximising benefit irrespective of
cost for climate change mitigation only (c) and biodiversity conservation only (d). These
figures illustrate how priority location change across the four scenarios.
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Results for restoration of 40% of deforested lands
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Figure 13: Restoration of 40% of deforested lands. Performance of a range of
forest restoration prioritisation scenarios (points) with respect to climate change mitiga-
tion benefit (x axis), measured as above-ground carbon sequestration, and biodiversity
conservation benefit (y axis), measured as the mean percent reduction in extinction risk
among all species. Cost-effective scenarios (solid line) maximise return-on-investment
(benefit/cost) and are likely to represent the most feasible restoration planning op-
tions. For reference, maximum-benefit scenarios (dashed line) that maximise returns
irrespective of cost are also presented. The point circled in black represents a potential
good compromise solution. Two further reference scenarios are also presented in which
restoration is allocated randomly (triangle) or to minimise costs irrespective of benefit
(square). For all scenarios the colour represents the total cost of the solution (USD; see
legend). Maps of the locations associated with several of these solutions are included in
the following two figures.
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Figure 14: Restoration of 40% of deforested lands. Priority locations for restoration
(cyan) for a solution that represents a balance between climate change mitigation and
biodiversity conservation objectives while maximising cost-effectiveness (benefit/cost).
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(a) cost-effective: climate change mitigation (b) cost-effective: biodiversity conservation

(c) max-benefit: climate change mitigation (d) max-benefit: biodiversity conservation

Figure 15: Restoration of 40% of deforested lands. Priority locations for restoration
(cyan), under four scenarios: maximising cost-effectiveness for climate change mitigation
only (a) and biodiversity conservation only (b), versus maximising benefit irrespective of
cost for climate change mitigation only (c) and biodiversity conservation only (d). These
figures illustrate how priority location change across the four scenarios.

27



Results for restoration of 50% of deforested lands
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Figure 16: Restoration of 50% of deforested lands. Performance of a range of
forest restoration prioritisation scenarios (points) with respect to climate change mitiga-
tion benefit (x axis), measured as above-ground carbon sequestration, and biodiversity
conservation benefit (y axis), measured as the mean percent reduction in extinction risk
among all species. Cost-effective scenarios (solid line) maximise return-on-investment
(benefit/cost) and are likely to represent the most feasible restoration planning op-
tions. For reference, maximum-benefit scenarios (dashed line) that maximise returns
irrespective of cost are also presented. The point circled in black represents a potential
good compromise solution. Two further reference scenarios are also presented in which
restoration is allocated randomly (triangle) or to minimise costs irrespective of benefit
(square). For all scenarios the colour represents the total cost of the solution (USD; see
legend). Maps of the locations associated with several of these solutions are included in
the following two figures.
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Figure 17: Restoration of 50% of deforested lands. Priority locations for restoration
(cyan) for a solution that represents a balance between climate change mitigation and
biodiversity conservation objectives while maximising cost-effectiveness (benefit/cost).
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(a) cost-effective: climate change mitigation (b) cost-effective: biodiversity conservation

(c) max-benefit: climate change mitigation (d) max-benefit: biodiversity conservation

Figure 18: Restoration of 50% of deforested lands. Priority locations for restoration
(cyan), under four scenarios: maximising cost-effectiveness for climate change mitigation
only (a) and biodiversity conservation only (b), versus maximising benefit irrespective of
cost for climate change mitigation only (c) and biodiversity conservation only (d). These
figures illustrate how priority location change across the four scenarios.
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Applying the results to planning and practice

Decision support platforms that are simple to understand and use are more likely to be
adopted, provided they are clearly documented, published, and validated. WePlan –
Forests benefit governments, NGOs, investors, and restoration practitioners.
First, regional and national governmental agencies can integrate these data products
into policy and planning. Second, NGOs and conservation organisations can use the
data products to prioritise restoration activities. Third, restoration practitioners, local
communities and landowners could use the data products to inform local-scale
restoration activities. Finally, the CBD has identified value in this project to support
country-level restoration planning and implementation to reach its restoration targets.

Decision support platforms inform but do not prescribe decisions. In our framework the
judgment of decision-makers remains an essential part of the planning and decision
process. The outputs presented here need to be integrated in a broader decision-making
process that is inclusive. Recommendations for the design of such processes were
discussed at the first training webinar, which can be accessed by following this link.
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Methods

The spatial optimization restoration planning framework (WePlan – Forests) allows for
comparisons of multiple scenarios through the quantification of restoration outcomes
and trade-off curves at the national scale for all developing countries Party to the
Convention on Biological Diversity (CBD) with tropical forest ecosystems. These
scenarios are based on criteria that reflect biodiversity conservation, climate change
mitigation, implementation costs, and opportunity costs.

Area available for restoration

Our study area comprises all Tropical & Subtropical coniferous forest, Tropical &
Subtropical Dry Broadleaf Forests, Tropical & Subtropical Moist Broadleaf Forests, and
Tropical & Subtropical Grasslands, Savannas & Shrublands (which contains some
forested ecosystems) within +25 to -25 degree latitudes, excluding Australia. Using the
Copernicus 2019 land cover raster (Buchhorn et al., 2020) we defined areas available
for restoration as classes 121 (Open forest, evergreen needle leaf), 123 (Open forest,
deciduous needle leaf), 122 (Open forest, evergreen broad leaf), 124 (Open forest,
deciduous broad leaf), 125 (Open forest, mixed), 126 (Open forest, unknown), 20
(Shrubs), 30 (Herbaceous vegetation), and 40 (Cultivated and managed
vegetation/agriculture (cropland)) (Buchhorn et al., 2020). This is summarised as the
proportion of land available for restoration within each 1km2 resolution planning unit.
All other classes were considered as unavailable for restoration.

The definition of the areas that are deemed available for restoration can have a
profound impact on the spatial distribution of areas selected for forest restoration, and
this issue is a key consideration for planning and policy related to large-scale forest
restoration. The definition is uncontentious for the tropical and subtropical forest
biomes where areas that were once forested but are no longer forced can be defined
reliably, and where areas associated with land uses that are not available for forest
restoration (e.g. urban areas, water, wetlands) can be excluded. However, it is more
difficult to define areas available for forest restoration in other biomes. For example,
the Tropical & Subtropical Grasslands, Savannas and Shrublands biome contains 58
ecoregions including woodlands, savannah, forest-savannah, pine forests, bushlands,
shrublands, grasslands, and other types, and spanning montane, tropical, subtropical
and xeric conditions.
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There is a legitimate concern that including non-forest ecoregions such as savannahs in
forest restoration planning could be perceived as promoting, or lead to, afforestation of
these systems. However, there are three reasons we argue some of these ecoregions
should not be unilaterally excluded from forest restoration planning. First, tree cover is
an important component of several of these ecoregions and they may, therefore,
represent areas that could support some level of forest restoration without
compromising their ecological integrity.

Second, ecoregions and biomes are coarsely mapped and may contain a range of other
ecosystem types at smaller scales. As some of the ecoregions are large (e.g. the
Cerrado), excluding them may result in a substantial impact on the area considered
available for forest restoration. Furthermore, transitions between ecoregions can
sometimes be gradual, hence the boundaries are subjectively defined. For large
ecoregions, error in the mapping of boundaries can substantially alter the area of the
ecoregion and hence the area deemed available for forest restoration. For example, a
±1 km distance error in the definition of the boundary of the Cerrado translates to a
potential ±38,000 km2 (3.8 M ha) variation in the ecoregion area (estimated using an
inner and outer buffer of the Cerrado ecoregion polygon).

Third, there are many ecosystems that appear to be at risk of transitioning to
alternative states as anthropogenic pressures have altered some of the biophysical
processes (e.g. fire regimes, climate change, elephant abundance) that maintain some
ecoregions in a non-forested, or partially forested, state. Climate change in particular
has the potential to drive substantial changes in the distribution of some ecosystems
over the coming decades. In that context, there may be some ecoregions that are
currently non-forested, but fostering a transition to a forest ecosystem may be deemed
appropriate if there is a high likelihood the current ecosystem would be lost anyway.

There is considerable subjectivity and uncertainty in the definition of areas deemed
available for restoration. Many of the decisions are subjective, are sensitive to error in
datasets, and may not be robust to climate change impacts. Ultimately, it is likely to
fall to individual nations to make these decisions though science could play an
important role in informing those decisions. There is a research need to produce a high
resolution (e.g. 30m-100m) estimate of the areas that could be deemed available for
restoration under a variety of assumptions, based on a range of ecological and
biophysical data, and that provides an assessment of risk in the context of climate
change. Also needed is a spatially explicit assessment of the potential for perverse
outcomes to arise from forest restoration.
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Problem formulation

We formulate the problem of where to restore forest to maximise benefits, quantified in
a range of ways among the scenarios, as a linear programming problem (a formal,
mathematical optimisation framework). Specifically, the objective considers biodiversity
conservation and climate change mitigation, while accounting for implementation and
opportunity costs. The objective function is:

max ws

Np∑
i

xi
si

ci + ei
+ wb

Np∑
i

Ns∑
j

xi
bij

ci + ei

subject to
Np∑
i

xiAi ≤ T

0 ≤ xi ≤ ui ∀i ∈ Np

(1)

where x is a vector of decision variables representing the proportion of each planning
unit to restore; s is the expected change in carbon sequestration resulting from forest
regeneration relative to current land cover conditions; b is the expected benefit to
biodiversity conservation, summed across all species, following restoration (described in
detail below); and c and e are the opportunity and establishment costs associated with
restoration, respectively. Carbon sequestration, biodiversity and cost metrics are
quantified as rates per unit area of restoration. The relative contribution of climate
change mitigation and biodiversity conservation objectives is determined by the weights
ws and wb. They are required because the equivalence of objectives with different units
is a subjective decision that must be made by decision-makers.

The two components of the objective function represent the returns (benefits divided
by costs) of forest restoration to biodiversity conservation (b/(c + e); US$−1 km−2) for
each species j; climate change mitigation (s/(c + e); tonnes US$−1 km−2), where the
total cost of forest restoration is the sum of the opportunity costs (c; US$−1 km−2)
and the establishment costs (e; US$−1 km−2). Np is the total number of planning
units and Ns is the total number of species.

The first constraint limits the total restoration area to target T. The second constraint
limits the proportion of each planning unit that can be restored, where u (range: 0-1)
is determined by calculating the proportion of each planning unit containing cover
types that are not available for restoration (e.g. water and urban areas).
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This equation represents the cost-effectiveness scenario. For comparison a
maximum-benefit formulation was also calculated in which the cost denominator is
removed. Two other reference solutions were also calculated that did not involve
optimisation. The random allocation solution iteratively selected planning units,
restoring each one up to the total available area for restoration (u), until the total
restoration area target (T ) had been achieved. This was repeated 100 times and the
average returns calculated. The minimum cost solution restored forest in planning
units in order of ascending cost until the target was achieved. The benefits and costs
associated with these two references scenarios were then calculated.

We implement this problem formulation separately for each nation, as that is the scale
at which planning is translated into implementation.

Quantifying biodiversity conservation benefit

Biodiversity conservation was quantified as the estimated mean reduction in extinction
risk among all forest-associated species resulting from forest restoration. This
estimation is based on the extinction risk model of (Thomas et al., 2004):
e = 1− (a/A0)

z, where a is the current habitat area, or future projected habitat area
following restoration, A0 refers to the original habitat area, corresponding to
presettlement conditions, and z determines how extinction risk increases as habitat is
lost (here, z = 0.25). The benefit to biodiversity conservation (B) of forest restoration
among species is then estimated as: B =

∑Ns

i (ec − er), where ec is the extinction risk
based on current habitat area, er is the projected extinction based on the habitat area
following restoration, and N is the number of species included in the model.

Estimating the area parameters requires spatially explicit estimates of the species range
and habitat within the range for each species of interest. We use the Spatial Planning
for Area Conservation in Response to Climate Change (SPARC) dataset (Hannah
et al., 2020; Marquet et al., 2020), which modelled the ranges of approximately
103,000 species in the Neotropics, the Afrotropics and the Indo-Malayan tropics.
Benefits of the SPARC dataset over other species range collections is that a large
number of species are represented including a strong representation of plants, and the
ranges are modelled in a consistent manner.

The SPARC project modelled current species distributions on the basis of species
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location data sourced from multiple datasets (e.g. BirdLife, GBIF, VertNet, BIEN)
with filtering to exclude records with missing, duplicated, or errant location data (see
Hannah et al., 2020; Marquet et al., 2020, for details). Distributions were modelled
for species with at least 10 occurrence records, with the domain of the predictions
limited to within 500 km of occurrence records. The environmental covariates used
related to bioclimatic conditions (mean annual temperature, mean diurnal temperature
range, seasonality of temperature, minimum temperature of the coldest month, mean
annual precipitation, seasonality of precipitation; WorldClim v1.4, www.worldclim.org),
an accumulated aridity index (Marquet et al., 2020), and soil variables (depth to
bedrock, pH, clay proportion, silt proportion, bulk density; all means within the top
1m) (Soilgrids; www.soilgrids.org).

The climate and soil variables used in the distribution modelling are likely to be
associated with the potential distribution of habitat. While these SPARC SDM ranges
are expected be less extensive than Extent of Occurrence (EOO) ranges because they
may already partially reflect the distribution of habitat through the proxies of climate
and soil variables, they are expected to be more extensive than Area of Habitat (AOH;
also referred to as Extent of Suitable Habitat - ESH) range estimates because they do
not explicitly reflect the distribution of habitat (for a discussion of EOO and AOH see
Brooks et al., 2019).

Quantifying what constitutes habitat for each species is a challenging problem.
Species-habitat associations have been defined for 9,932 of the SPARC species (IUCN),
through a process of assessment by experts. For the remaining species we use the
empirical location data for each species to estimate the habitat association using a
map of the IUCN habitat types (Jung et al., 2020). Specifically, we calculate the
proportion of occurrence records occurring within each of the Level 1 IUCN habitat
classes, and identify the threshold that maximises the sensitivity and specificity of the
predicted habitat associations for the 9,932 species with defined habitat associations.
As our focus is on forest restoration we restrict our analysis to the subset of species
with forest associations, which could be predicted with 81.6% accuracy.

Following Strassburg et al. (2020), we simplify the IUCN habitat categories into six
general habitat types (forest, savannah, shrubland, natural grassland, wetland, desert)
for which the presettlement distributions were estimated. The area of original habitat
(A0) is derived by identifying area of the intersection between the species distribution
models and the presettlement habitat distributions for each species. Current habitat
area was determined by intersecting the species distribution models with an estimate of
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the current distribution of these five habitat types derived by reclassifying a
contemporary 100 m resolution map of the IUCN habitat types (Jung et al., 2020).

The contribution of forest restoration in each cell to the reduction in extinction risk
among all species is calculated using a weighted sum of the expected rates of change in
extinction risk. Specifically, for each planning unit the set of species that would benefit
from forest restoration at that location is identified using the SDM. The expected
reduction in extinction risk arising from forest restoration is the tangent to the
extinction risk function at the current level of habitat throughout the range, and is
calculated numerically. Forest restoration in any cell changes the benefit of restoration
in other cells. We therefore solve the optimisation problem in increments, updating the
extinction risk benefit calculation after each increment.

The contribution of each species to the extinction risk reduction benefit is determined
by a species weighting scheme that assigns equal total weights between plants and
animals (0.5 to each) and for animals then assigns equal weights among mammals,
birds, reptiles and amphibians (0.125 total weight to each). Within each of those
taxonomic groups the total weight is divided equally among all species in that group.
The weights sum to unity among all species. Without a weighting scheme plants would
have a disproportionately large influence on the solution due to their disproportionately
high representation among the set of species included in SPARC.

Quantifying climate change mitigation benefit

Climate change mitigation, measured here as potential carbon sequestration (PCS) in
aboveground biomass (AGB), is one of the benefits that can inform spatial restoration
planning for tropical forest ecosystems. Restored tropical forests contribute to the
reduction of CO2 in the atmosphere through carbon sequestration and, thus, to
mitigate global climate change (Brancalion et al., 2019b; Strassburg et al., 2019). A
map of predicted old-growth forest aboveground biomass (OGF-AGB) was created at
100m resolution using an iterative Random Forest model in Google Earth Engine. To
do so, a large number of potential predictor variables, including topographic, edaphic,
and bioclimatic, were tested, and predictor variables that did not add to the power of
the model were removed. The final model estimated OGS-AGB to within 20 Mg/ha for
a global validation sample of several thousand points. We then calculated the
difference between the year 2017 AGB at 100m resolution and then excluded pixels
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having more than 50% OGF-AGB as those would be less suitable for restoration. The
remaining restoration suitable pixels provided 100m resolution PCS-AGB, which were
then summed to create a 1x1 km estimate of PCS-AGB for each pixel. Our approach
provides a minimum and maximum bounded uncertainty for PCS-AGB through the
incorporation of the standard error AGB uncertainty maps available in our input 100m
AGB maps (CCI AGB 100m). The workflow and maps were developed by Dr. Eben
Broadbent and Almeyda Zambrano of the Spatial Ecology and Conservation Lab
(www.speclab.org) at the University of Florida (publication in preparation).

Quantifying costs

WePlan – Forests accounts for both opportunity costs and restoration implementation
costs. Accounting for opportunity costs is important to reduce conflict between
agricultural productivity and forest restoration as it increases the likelihood that forest
restoration will be concentrated into areas of marginal agricultural productivity.
Opportunity cost may also be linked to the probability of long-term success of forest
restoration (Brancalion et al., 2019a). Accounting for establishment costs is important
in order to maximise the return on investment from restoration activities.

Establishment costs were estimated using a statistical model that was based on forest
restoration project data (n = 234 observations) extracted from 50 World Bank project
reports spanning 24 countries (Vincent, Kaczan, et al., in prep.). The criteria for
inclusion were that the area and costs, or the cost per unit area, of restoration must
have been explicitly reported. The dataset excluded observations from Eastern Europe
as they are not relevant to the context of tropical forest restoration, and excluded
unusual special-purpose activities (e.g. mangrove restoration, tree-planting along
highways, planting bamboo, etc) as they are not representative of the type of activities
most relevant to tropical forest restoration. A distinction was made between
afforestation, referring to forest regeneration on land where the most recent use was
not forest (typically agriculture), and reforestation, referring to regeneration of forest
land that recently lost its tree cover due to harvesting, wildfire, or some other source of
damage. Costs included all expenditures associated with regeneration until the new
stand was ‘free to grow’ (approx. 3-5 years, depending on project and site).

The dependent variable in the statistical model was the natural log of establishment
costs per hectare expressed in 2011 US$. The independent variables included GDP per
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capita (natural log transformed), a binary variable distinguishing between afforestation
and reforestation, a binary variable distinguishing between natural and active
regeneration, a binary variable indicating whether the project was initiated pre- or
post-2010, a continuous variable representing the proportion of the country associated
with temperate/boreal biomes, a binary variable indicating whether the cost accounted
for overhead costs or not, and the total area of forest regeneration (natural log
transformed). The model explained approximately half of the variation in the data (R2

= 0.46; Vincent, Kaczan, et al., in prep.), which is reasonable performance given the
wide range of countries, years and restoration contexts represented by these reports. A
strength of this model is that it is based on empirical evidence in contrast to
alternative approaches to estimating establishment costs that are based on expert
opinion. The model indicates that establishment costs are positively associated with
per-capita GDP, that reforestation is more expensive than afforestation (this appears to
arise as a result of the increased difficulty and expense of accessing and preparing
partially forested sites compared to marginal agricultural lands), and that there are
scales of economy associated with the total area of forest restored.

Establishment costs were estimated spatially using gridded GDP estimates for 2011
(Kummu et al., 2018) and a model of the potential for natural regeneration (Beyer et
al., in prep.). The latter was used to determine the value of the binary active/natural
regeneration variable for each cell. All of the other binary variables were set to 0, and
we use the mean restoration area among all projects (9604 ha) to estimate
establishment costs. Establishment costs were transformed from 2011 to 2017 US$
using annual inflation rates (2012-2017: 1.019, 1.037, 1.056, 1.067, 1.078, 1.099,
respectively).

Opportunity costs were based on estimates of annual land rent (a measure of net
income generated by land) for cropland and pastureland (2017 USD values) at a
resolution of approximately 10km (Vincent & Yi, in prep.). As an initial step, gross
annual revenue was determined separately for cropland and pastureland using existing
gridded data sources (cropland: MapSPAM, www.mapspam.info; pastureland, Gridded
Livestock of the World, https://dataverse.harvard.edu/dataverse/glw), augmented by
national data from FAOSTAT (http://www.fao.org/faostat/en/#data/QC;
http://www.fao.org/faostat/en/#data/QL). In the final step, detailed farm budget
data from large-scale household surveys conducted by the World Bank and FAO in
several dozen developing countries were used to convert gross annual revenue to annual
land rent. The cropland opportunity cost layer took precedence over the pastureland
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opportunity cost in areas where the two overlap. Establishment costs are short-term
but opportunity costs are ongoing. We therefore calculate the total cost of restoration
in each cell as the establishment cost plus the in perpetuity opportunity cost (the
opportunity cost divided by a discount rate of 5%).

Limitations of this analysis

The difficulties of defining the areas available for restoration are described above. This
analysis makes several other assumptions and judgments that are likely to influence the
analysis.

The analysis assumes that the climate mitigation and biodiversity conservation benefits
arising from active and natural regeneration do not differ. However, active regeneration
may sometimes be associated with planting non-native tree species that have
commercial value (e.g. eucalypts for timber production, or species with
food-production value). For example, Brazil’s Forest Code allows up to 50% of
non-native species to be used in forest restoration. Depending on how these species are
planted and maintained they may still have substantial value for carbon sequestration,
but they are likely to have diminished value for biodiversity conservation. The link
between the proportion of non-native species planted and the value to biodiversity
conservation has not been well established, but it could mean that this analysis has
overestimated the extinction-reduction benefits arising from active regeneration.

This analysis also ignores any variation in the temporal rates at which benefits arise
spatially, or as a function of the regeneration method. There may be substantial
differences in these rates as a result of differences in seedling establishment and
survival, competition, succession, and growth rates. Accounting for some of these
effects and their implications for the rates at which benefits are achieved is a goal for
the future refinement of the WePlan Forests decision support platform.

This analysis enforces no assumptions about the maximum level of forest cover that
might be permitted in an area, which typically results in a substantial spatial
concentration of fully-restored forested areas (see solution maps). Large, contiguous
blocks of forest may provide additional benefits to biodiversity (e.g. reduction in edge
effects, reduced accessibility to people) but may have detrimental impacts on local
communities. It would be straightforward to limit the maximum area of forest cover at
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a planning unit or jurisdictional level if nations wish to identify forest restoration
solutions that are more aligned with the land sharing perspective than the land sparing
perspective.

This analysis focuses on the benefits and costs at the societal level, and does not
account for land tenure and livelihoods at local levels. A major challenge for policy is
to identify ways of funding forest restoration and compensating affected landowners
such that there is no net negative impact. Ideally, both society and individuals achieve
net benefits from forest restoration (so called win-win solutions).

All of these assumptions could be addressed within the WePlan – Forests framework
through collaboration with individual nations.

41



References

Brancalion, P.H.S., Meli, P., Tymus, J.R.C., Lenti, F.E.B., M. Benini, R., Silva, A.P.M., Isernhagen, I.
& Holl, K.D. (2019a). What makes ecosystem restoration expensive? A systematic cost assessment
of projects in Brazil. Biological Conservation, 240, 108274.

Brancalion, P.H.S., Niamir, A., Broadbent, E., Crouzeilles, R., Barros, F.S.M., Almeyda Zambrano,
A.M., Baccini, A., Aronson, J., Goetz, S., Reid, J.L., Strassburg, B.B.N., Wilson, S. & Chazdon,
R.L. (2019b). Global restoration opportunities in tropical rainforest landscapes. Science Advances,
5, eaav3223.

Brooks, T.M., Pimm, S.L., Akçakaya, H.R., Buchanan, G.M., Butchart, S.H.M., Foden, W.,
Hilton-Taylor, C., Hoffmann, M., Jenkins, C.N., Joppa, L., Li, B.V., Menon, V., Ocampo-Peñuela,
N. & Rondinini, C. (2019). Measuring Terrestrial Area of Habitat (AOH) and Its Utility for the
IUCN Red List. Trends in Ecology & Evolution, 34, 977–986.

Buchhorn, M., Lesiv, M., Tsendbazar, N.E., Herold, M., Bertels, L. & Smets, B. (2020). Copernicus
Global Land Cover Layers—Collection 2. Remote Sensing, 12, 1044.

Chazdon, R.L. & Guariguata, M.R. (2016). Natural regeneration as a tool for large-scale forest
restoration in the tropics: Prospects and challenges. Biotropica, 48, 716–730.

Crouzeilles, R., Beyer, H.L., Monteiro, L.M., Feltran-Barbieri, R., Pessôa, A.C.M., Barros, F.S.M.,
Lindenmayer, D.B., Lino, E.D.S.M., Grelle, C.E.V., Chazdon, R.L., Matsumoto, M., Rosa, M.,
Latawiec, A.E. & Strassburg, B.B.N. (2020). Achieving cost-effective landscape-scale forest
restoration through targeted natural regeneration. Conservation Letters, 13, e12709.

Crouzeilles, R., Ferreira, M.S., Chazdon, R.L., Lindenmayer, D.B., Sansevero, J.B.B., Monteiro, L.,
Iribarrem, A., Latawiec, A.E. & Strassburg, B.B.N. (2017). Ecological restoration success is higher
for natural regeneration than for active restoration in tropical forests. Science Advances, 3,
e1701345.

Hannah, L., Roehrdanz, P.R., Marquet, P.A., Enquist, B.J., Midgley, G., Foden, W., Lovett, J.C.,
Corlett, R.T., Corcoran, D., Butchart, S.H.M., Boyle, B., Feng, X., Maitner, B., Fajardo, J.,
McGill, B.J., Merow, C., Morueta-Holme, N., Newman, E.A., Park, D.S., Raes, N. & Svenning,
J.C. (2020). 30% land conservation and climate action reduces tropical extinction risk by more
than 50%. Ecography, 43, 943–953.

Jung, M., Dahal, P.R., Butchart, S.H.M., Donald, P.F., De Lamo, X., Lesiv, M., Kapos, V., Rondinini,
C. & Visconti, P. (2020). A global map of terrestrial habitat types. Scientific Data, 7, 256.

Kummu, M., Taka, M. & Guillaume, J.H.A. (2018). Gridded global datasets for Gross Domestic
Product and Human Development Index over 1990–2015. Scientific Data, 5, 180004.

Marquet, P., Maksic, J. & Rinaudo, M.E. (2020). SPARC: Spatial Planning for Area Conservation in
Response to Climate Change. Methods Documentation. Tech. rep., Conservation International.

Strassburg, B.B.N., Beyer, H.L., Crouzeilles, R., Iribarrem, A., Barros, F., de Siqueira, M.F.,
Sánchez-Tapia, A., Balmford, A., Sansevero, J.B.B., Brancalion, P.H.S., Broadbent, E.N.,
Chazdon, R.L., Filho, A.O., Gardner, T.A., Gordon, A., Latawiec, A., Loyola, R., Metzger, J.P.,
Mills, M., Possingham, H.P., Rodrigues, R.R., Scaramuzza, C.A.d.M., Scarano, F.R., Tambosi, L.
& Uriarte, M. (2019). Strategic approaches to restoring ecosystems can triple conservation gains
and halve costs. Nature Ecology & Evolution, 3, 62–70.

Strassburg, B.B.N., Iribarrem, A., Beyer, H.L., Cordeiro, C.L., Crouzeilles, R., Jakovac, C.C.,
Braga Junqueira, A., Lacerda, E., Latawiec, A.E., Balmford, A., Brooks, T.M., Butchart, S.H.M.,
Chazdon, R.L., Erb, K.H., Brancalion, P., Buchanan, G., Cooper, D., Díaz, S., Donald, P.F.,
Kapos, V., Leclère, D., Miles, L., Obersteiner, M., Plutzar, C., de M. Scaramuzza, C.A., Scarano,
F.R. & Visconti, P. (2020). Global priority areas for ecosystem restoration. Nature, 586, 724–729.

42



Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus,
B.F.N., de Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A.S.,
Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L. & Williams, S.E.
(2004). Extinction risk from climate change. Nature, 427, 4.

Watson, J.E.M., Evans, T., Venter, O., Williams, B., Tulloch, A., Stewart, C., Thompson, I., Ray,
J.C., Murray, K., Salazar, A., McAlpine, C., Potapov, P., Walston, J., Robinson, J.G., Painter, M.,
Wilkie, D., Filardi, C., Laurance, W.F., Houghton, R.A., Maxwell, S., Grantham, H., Samper, C.,
Wang, S., Laestadius, L., Runting, R.K., Silva-Chávez, G.A., Ervin, J. & Lindenmayer, D. (2018).
The exceptional value of intact forest ecosystems. Nature Ecology & Evolution, 2, 599–610.

43



About us

International Institute for Sustainability Australia (IIS-AU)

The International Institute for Sustainability Australia is a not-for-profit organisation
based in Canberra, Australia, and is the first sister-organisation of the International
Institute for Sustainability in Rio de Janeiro, Brazil. IIS-AU develops evidence-based
approaches for systematic spatial planning to support the design and implementation of
environmental policy, and to develop science and technology for environmental
decision-making, with a focus on forest ecosystem restoration.

International Institute for Sustainability Rio (IIS-Rio)

The International Institute for Sustainability (Rio) is an independent think-and-do-tank
focused on understanding the relationship between human society and the
environment. Their work promotes sustainable land use, in particular biodiversity
conservation, ecosystem service provisioning, sustainable soil management, climate
change mitigation and adaptation, and the socioeconomic development of actors
involved in these processes.

Convention on Biological Diversity (CBD) Secretariat

The Convention on Biological Diversity is a multilateral treaty established in 1993 with
the objectives of conservation of biological diversity, sustainable use of its components
and the fair and equitable sharing of the benefits arising from the use of genetic
resources. The convention promotes international cooperation and defines global goals
for conservation to achieve its objectives. The secretariat is responsible for assisting
Parties in implementing the programmes and reaching the targets.

Forest Ecosystem Restoration Initiative (FERI)

The Forest Ecosystem Restoration Initiative (FERI) supports developing countries
Party to the CBD in the development and operationalization of national targets and
plans for ecosystem conservation and restoration. FERI is supported by the Korea
Forest Service of the Republic of Korea and implemented by the Secretariat of the
Convention on Biological Diversity (CBD).

Korea Forest Service of the Republic of Korea

The Korea Forest Service is an independent agency specializing in forestry that is
overseen by the South Korean Ministry for Food, Agriculture, Forestry and Fisheries. It
is responsible for maintaining forest lands in South Korea and for the establishment and
implementation of forest policies and laws
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